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2 Theory 3

1 Introduction
The Lorenz system is a coupled system of three nonlinear differential equations
that were derived first by Ed Lorenz in 1963. He intended to find a model that is
able to describe the behavior of convection currents. Because of the complexity
of this issue drastic simplifications were required. The analysis of this problem
leads to several aspects of chaos theory.

2 Theory

2.1 Lorenz Equations
The equations found by Lorenz can be written as follows:

dx
dt = 10 (y − x)

dy
dt = −xz + rx− y

dz
dt = xy − 8

3z

Here r is a parameter that is linked to the Rayleigh number. In simplified
terms the x value is related to the convection velocity, y to the temperature
difference between the increasing and the decreasing flow and z to a nonlinear
impact on the temperature gradient [John Argyris, 2010, S. 479 f.]. It is remark-
able that the equations are symmetric in x and y since they remain the same if
x and y were replaced by −x and −y.

2.2 Phase Space, Trajectory and Attractors
The state of the above system at the time t can be illustrated by a single point
in space. The point then has the components x, y and z and the space is called
phase space. Over time the state of the system changes which corresponds
to a movement of the point in the phase space along a curve that is called
trajectory [Meschede, 2010, S. 215]. When t tends to infinity, the trajectory
might approach a so-called attractor. That can be a geometric object like a
simple set of points, a curve or a manifold. However, sometimes this attractor
consists of a more complicated set that cannot be described by classical geometry
because its Hausdorff dimension is not an integer. Those objects are therefor
called fractals. If this applies to the attractor, it is called a strange attractor
[Strogatz, 2001, S. 317 ff.].

2.3 Deterministic Chaos
Deterministic Chaos is characterized by the fact that long term predictions
are impossible even though the next state of the system is uniquely defined by the
current one. That requires a nonlinear system and sensitive dependence on
the initial conditions. This means that minimal changes in these conditions
will cause the trajectories to drift apart exponentially. But even though the
trajectories will diverge very fast, they can still approach the same attractor in
case it is a strange one. Then the maximum distance is limited to the diameter
of the attractor and eventually saturation occurs [Meschede, 2010, S. 240 f].
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3 Task Formulation

3.1 Writing the Program
First a program has to be written that integrates the differential equations by
using the Runge-Kutta 4th order method. It should enable the user to enter the
initial conditions as well as the simulation parameters via the command line.
Furthermore, it should naturally be able to execute the simulation and write the
results to a file.
When this works, the program should be extended that way that two Lorenz

system objects with different initial conditions can be created and compared.
Therefor a routine should be written that computes the distance between these
systems as a function of the elapsed time.

3.2 Presentation and Interpretation of the Results
When the program runs properly, the results should be visualized by plotting
the data. It is suggested to plot the phase space to receive an impression of the
shape of the trajectory as well as to plot the time dependency of the components
for more accurate considerations. Furthermore, it should be ascertained how
sensitive the system reacts on small changes in the initial conditions. Therefor
the distance of two different trajectories should be plotted against the time for
decreasing initial distances. Ultimately, one should find appropriate ways of
presentation of the remarkable results and interpret them as far as it is possible.

4 Idea and Structure of the Program
First I reflected about the required features of the program and how to implement
these best.
I decided to create a class called LorenzSystem to bunch all information and

methods that characterize such a system. These are for example the initial
conditions (x0, y0 and z0), the simulation parameters (r, increment h and number
of steps n) and the way of how x, y and z are related (function to compute the
Lorenz equations). Furthermore, a few public functions (to initialize the system,
get the values of the private members and of course to simulate the system) were
needed.
To integrate the Lorenz equations I used the Runge-Kutta 4th order method

which works as follows:

xi+1 = xi + h

6 (k1 + 2k2 + 2k3 + k4)

k1 = F (ti, xi)

k2 = F (ti + h

2 , xi + k1
h

2 )

k3 = F (ti + h

2 , xi + k2
h

2 )

k4 = F (ti + h, xi + k3)

where xi is the current position, xi+1 the position after one more time in-
crement and k1 - k4 are estimators for the average slope in this interval. The
function F represents the derivative of x with respect to t. The current state of a
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system must be given to be able to apply this method. The slope of the function
between the positions xi and the xi+1 is estimated by four different values that
will finally be averaged (weighted). The product of this value and the increment
h added to the value of xi should then be an appropriate estimation for xi+1.
[Yang, 2000, S. 197]
On top of the first class I created a second one called LorenzPair that owns

among others two objects of the type LorenzSystem. It should cluster those
methods that are required to compare the trajectories of these systems. First I
had to decide which initial positions should be chosen for them. I did not want to
predetermine the initial positions arbitrarily because I think for numerical studies
it is beneficial to generate initial values randomly unless there are restrictions.
So I wrote a function that sets the initial position of a LorenzSystem object to
random values (though in a limited interval). In contrast to that I defined r
to be 28 by default as that seems to be a particularly suitable value (for the
distance analysis).
A consequence of the random choice of the initial positions was that the halving

of the distance was slightly more difficult. I decided to realize that by holding
the position of one system constant while the other system would be placed in
the center of the previous initial positions.
I do not want to go into more details at this place because they are described

fairly extensively in the source code which is attached to this document.

5 Interpretation of the Results
First I want to clarify the following: The results I found do not need to be valid
in general. It must be considered that it is impossible to verify an assumption
for all possible values and combinations so maybe it was pure chance to find
some correlations and regularities. But with an appropriate number of tests the
probability (that the founded results are valid) should be fairly reasonable.

5.1 The Lorenz Attractor
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Figure 1: Multi-sided view of a Lorenz system trajectory with the initial position
x0 = y0 = z0 = 1 and the parameter r = 28. The trajectory approaches
an object that is reminiscent of butterfly wings or a twisted eight.
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As the program was finished, I simulated a Lorenz system exemplarily for the
initial position x0 = y0 = z0 = 1 and set the parameter r to 28 as suggested. To
illustrate the shape of the computed values I decided to plot the trajectory in the
phase space as a 3D plot. In doing so I received a spatially limited object that
looks more or less regular and resembles a pair of butterfly wings or a twisted
eight (see fig. 1).
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Figure 2: Time dependency of x, y and z. After an initial transient the x and
y components oscillate irregular alternating around a positive and a
negative value whereas the z component oscillates always around zero.

Then I plotted x, y and z against the elapsed time as presented in fig. 2. By
this, the long term behavior of each component can be analyzed more accurately
It becomes clear that all of them behave irregularly concerning the time: After
an initial transient the x and y components start to oscillate alternating around
a positive and a negative value (of similar/equal modulus). The shift of the
oscillation from the positive to the negative range and vice versa seems to be
fairly irregular. The same applies to the amplitude. The z component behaves
in a comparable way even though it always oscillates around zero.

5.2 Variation of the Parameter r

Then I wanted to find out how a variation of the parameter r affects the trajectory
shape. First I set r to some negative numbers. The result was that the trajectory
crashed more or less straight into the origin no matter which initial conditions I
chose. So that might be a fix point for a certain r range.
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Figure 3: Fix point positions (x∞, y∞, z∞) as a function of r. For r < 1 there is
only one fix point (the origin). If r becomes greater than one, the fix
point divides into two ones that move apart for rising r. The z value
increases linearly whereas the x and y values seem to be connected
with r by some quadratic relationship.
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Subsequently I set r to small positive numbers to delimitate the extent of that
range. I recognized that the behavior changed for values greater than one: The
fix point started to move apart from the origin with increasing r. On top of that
there appeared to be a second fix point for the same value of r which could be
hit by modifying the initial position. The places of these fix points turned out
to be symmetric: They are on the same z-level but have a reversed sign in the x
and y component. But that makes absolutely sense since the Lorenz equations
are symmetric in x and y (see sec. 2).
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Figure 4: Shape of the attractor depending on the choice of r: For small r (< 1)
the trajectory crashes quite fast into the origin. If r is chosen little
bigger, it edges its way towards one of two fix points depending on the
initial position. For still bigger values of r (roughly> 24) the trajectory
approaches a strange attractor whereas its form can still vary for some
r ranges. The attractors are indicated by the yellow/orange color.

For values of r laying roughly in the interval from 15 to 24 I found that the
convergence of the trajectory’s course becomes more slowly. First the trajectory
seems to remain on a closed curve like an ellipse. But then it behaves according to
one of two different patterns depending on the initial position: It eventually starts
to form either a spiral-shaped curve approaching the center of the ellipse (which
is a fix point) or one that tends outwards. In the second case the trajectory
will break away from the ellipse after some orbits and start to rotate around an
opposite one. That means that the trajectory will approach the Lorenz attractor.
When r increases in the stated interval, those trajectories with initial positions

close to the origin will approach fairly long one of the fix points. In contrast to
this, those trajectories which were quite fast off the origin at the beginning
already start to approach the Lorenz attractor for smaller values of r.
If r is big enough (roughly > 24), almost all initial conditions seem to lead to

the same strange attractor and one receives objects similar to the one in fig. 1.
Finally I set r to some values between 24 and 200 and received a strange

attractor most often even though there were some more or less small intervals in
which I came across periodic (non chaotic) results (e.g. for r = 100 in fig. 4).
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5.3 Sensitivity on the Initial Conditions
Finally I wanted to find out how sensitive the system reacts on minimal changes
in the initial conditions. For this purpose I computed and plotted the distance
of two trajectories (with different initial positions) as a function of t. I set r to
28 as this value leads to chaotic behavior and the Lorenz attractor. Besides, I
reduced the initial distance to the half length a couple of times. In the course of
this I found the following things:

1. Both trajectories converge on the same attractor. So the maximum dis-
tance of two trajectories (for large values of t) is limited to the diameter
of this attractor. That also implies that if the initial distance has a order
of magnitude similar to the attractor, its development is not quite that
interesting.

2. If however the initial distance is very small compared to the size of the
attractor, the trajectories first seem to have an identical course. But after
a certain time they start to diverge exponentially fast (on a large scale)
even though smaller-scale oscillations superpose this increase in the dis-
tance. These small oscillations are the results of the irregular shape of the
trajectories while approaching the strange attractor.

Due to these observations I plotted the logarithm of the distance against the
elapsed time. The results for some different initial distances are presented in fig.
5 and confirm the findings: After a certain time the logarithmized curve exhibits
an almost linear increase (with more or less small oscillations) before eventually
saturation arises. It is interesting to note that the slope of the linear part seems
to be independent of the initial distance. So for smaller distances saturation will
be achieved later.
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Figure 5: Sensitivity on initial conditions: Development of the distance of two
trajectories with various initial distances δ0. They will start to diverge
exponentially fast after a certain time, no matter how close they were
to each other at the beginning. As the maximum distance is limited
to the diameter of the attractor, eventually saturation occurs.

According to [Strogatz, 2001, S. 321 f.] the average slope of the curve in
the linear interval is called Liapunov exponent. This value indicates a time
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horizon beyond which prediction breaks down. In real studies it is impossible
to determine the initial conditions exactly, so for chaotic systems one cannot
predict future states precisely. If the time t becomes big enough, the predicted
behavior will differ completely from the real behavior.
So the system reacts extremely sensitive on small changes in the initial con-

ditions. For a better illustration of this I created one more plot (see fig. 6).
Therefor I simulated the Lorenz system for a couple of initial positions that were
fairly close to each other (average distance of around 10−3). Then I plotted the
distribution of the the resulting trajectory positions for several values of t. It
becomes clear that they first remain close to each other but after some time
diverge exponentially fast so that they are scattered over the whole attractor for
t > 30000.

-20 0 20 -200 200
20
40

t = 0

-20 0 20 -200 200
20
40

t = 17000

-20 0 20 -200 200
20
40

t = 20000

-20 0 20 -200 200
20
40

t = 36000

initial conditions:
x0 = 1
y0 = 1
z0 = 1

x
y

z

Figure 6: Divergence of trajectories with small initial distance. A red point in-
dicates the position of one trajectory in the phase spase at the stated
time t. Although the initial distances were very small (around 10−3)
the states in the phase space quickly spread on the whole attractor
which is indicated by the green color.
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